
0018-9162/12/$31.00 © 2012 IEEE Published by the IEEE Computer Society FEBRUARY 2012 7

COMPUTING CONVERSATIONS

JavaScript:  
Designing  
a Language  
in 10 Days

W hen Netscape hired 
Brendan Eich in April 
1995, he was told that 
he had 10 days to create 

and produce a working prototype of 
a programming language that would 
run in Netscape’s browser. Back then, 
the pace of Web innovation was furi-
ous, with Microsoft suddenly making 
the Internet the focus of its Win-
dows 95 operating system release 
in response to Netscape’s emerging 
browser and server products. 

Netscape got so much attention 
from Microsoft at that time because 
Netscape considered the Web browser 
and server as a new form of a dis-
tributed OS rather than just a single 
application. Once Mosaic debuted in 

appeal to nonprofessional program-
mers much like Microsoft’s Visual 
Basic and interpretable for easy 
embedding in webpages. According 
to Eich,

If I had done classes in JavaScript back 

in May 1995, I would have been told 

that it was too much like Java or that 

JavaScript was competing with Java …  

I was under marketing orders to make 

it look like Java but not make it too big 

for its britches … [it] needed to be a 

silly little brother language.

Given all these requirements, con-
straints, and limitations, Eich needed 
to produce a working prototype on a 
tight schedule that would meet both 
Sun’s needs and the Netscape 2.0 Beta 
release schedule.

TECHNICAL INSPIRATIONS
Although the schedule and con-

straints might have been impossible 
for most programmers, Eich had a long 
history of building new programming 
languages, starting from his experi-
ence as a student at the University of 
Illinois, where he built languages just 

The evolution and use of JavaScript, a language developed in  
10 days back in 1995, is really just getting started. 

Charles Severance
University of Michigan

1993, the Web became portable across 
Windows, Macintosh, and Unix and 
gave software developers the hope 
that they could develop applications 
for all of these environments.

But HTML wasn’t sufficient by itself 
to define a new application develop-
ment environment or OS. To cement 
the portable OS concept, the Web (and 
Netscape) needed portable program-
ming languages.

Sun’s Java language seemed to be 
the solution for portable heavyweight 
applications. A compiled language 
that produced byte code and ran in 
the Java virtual machine, Java sup-
ported rich object-oriented patterns 
adopted from C++ and seemed likely 
to be able to achieve performance 
similar to C++ and C. Java was the 
Web’s answer to Microsoft’s Visual 
C++. 

ENTER JAVASCRIPT
Knowing that Java was a rich, com-

plex, compiled language aimed at 
professional programmers, Netscape 
and others also wanted a lightweight 
interpreted language to complement 
Java. This language would need to 

Computing Conversations, a monthly 
multimedia-enhanced column, is in- 

tended to put a more human face on the 
technologies we’re using in computer 
science. Future installments will present 
both full interviews and edited video 
segments featuring the founders and 
leaders in our field (www.computer.org/
computingconversations).



COMPUTING CONVERSATIONS

COMPUTER 8

… JavaScript had enough good stuff at 

the beginning to survive. If you think 

back to the 1990s, JavaScript was 

cursed because it was mainly used for 

annoyances like little scrolling mes-

sages in the status bar at the bottom of 

your browser or flashing images. With 

JavaScript getting some evolutionary 

improvements [during the late 1990s] 

through the [ECMA] standards pro-

cess, it became fast enough and good 

enough in 2004 and 2005 to beget the 

Web 2.0 revolution.

Although the original version of 
JavaScript might not have been per-
fect, its initial adoption was for rather 
simple applications, so it had time to 
slowly evolve behind the scenes and 
address its early weaknesses. More-
over, because JavaScript’s richness 
was in its runtime support rather than 
in its language syntax, improving 
JavaScript implementations without 
requiring changes to the syntax of 
existing JavaScript programs was 
relatively straightforward.

THE MODERN ERA
JavaScript had been in browsers for 

almost a decade when the Ajax revo-
lution started, moving JavaScript into 
the mainstream as an essential part 
of application development. Microsoft 
triggered Ajax’s domination in Web 
interfaces by adding the XMLHTTP- 
Request feature to its Internet Explor-
er browser. Other browsers quickly 
added similar features to allow Java- 
Script to retrieve data from serv-
ers and update the HTML document 
without requiring a full-page request-
response cycle. With this innovation, 

highly interactive user interface func-
tionality moved into the browser to 
create increasingly rich desktop-like 
experiences in applications such as 
Google Mail and Google Maps.

As the amount of code and data 
needed for each page increased, 
it exposed the weaknesses of the 
JavaScript runtime’s browser imple-
mentations. Instead of restarting the 
JavaScript runtime every minute or 
so, the same webpage would stay in 
a browser for several minutes with 
large, dynamic, in-memory data 
elements and nearly continuous 
background communication with 
servers. Google built its own Chrome 
browser and the V8 JavaScript inter-
preter to put the browser marketplace 
on notice that low-performance 
JavaScript implementations wouldn’t 
be tolerated. The market quickly fol-
lowed suit and improved JavaScript 
interpreter performance across the 
board.

P rojects such as Node.js make 
it possible to use JavaScript 
as the language for building a 

Web application’s server elements. 
Because JavaScript has been event-
based from the beginning, building 
highly scalable Web applications 
using JavaScript without managing 
the complexities of multithreading 
becomes quite natural. 

As HTML5 emerges, it’s entirely 
possible that JavaScript will soon 
become a dominant programming 
language for both mobile and desktop 
applications. The evolution and use 
of JavaScript is really just getting 
started, which is impressive for a 
language developed in 10 days back 
in 1995. 

To view my interview with Eich, 
visit /http://youtu.be/IPxQ9kEaF8c. 

Charles Severance, editor of the 
Computing Conversations column 
and Computer’s multimedia editor, 
is a clinical associate professor and 
teaches in the School of Information 
at the University of Michigan. Contact 
him at csev@umich.edu.

to experiment in syntax. At Silicon 
Graphics, he created languages that 
could be used to build extensions for 
network monitoring tools. 

Clearly, building “yet another” 
language wasn’t the hard part for 
Eich—the hard part was producing 
a rich and powerful language while 
being prohibited from using the 
object-oriented syntax reserved for 
Java. He wanted to embed advanced 
features in JavaScript without using 
language syntax so the language 
would initially appear simple and 
lightweight, yet sophisticated pro-
grammers would be able to exploit 
its underlying power.

Like many other languages, Java-
Script took its basic syntax from the 
C language, including curly braces, 
semicolons, and reserved words. It 
was to be a light, friendly version of 
C with simpler semantics and better 
dynamic memory characteristics. 
Because a typical webpage’s lifetime 
lasted from a few seconds to a few 
minutes, JavaScript could take a very 
simplified approach to concurrency 
and memory management. 

Eich built a simplified object model 
that combined structs from the  
C language, patterns from SmallTalk, 
and the symmetry between data and 
code offered by LISP. The Hypercard 
event model inspired the pattern for 
adding events to the HTML docu-
ment. Object-oriented patterns were 
possible but via runtime semantics 
with prototypes (as in Self) instead of 
compiler-supported class syntax (as 
in Java and C++).

AN OVERNIGHT SUCCESS?
Virtually all successful program-

ming languages need a version 2.0 
before they really hit their stride, but 
we have yet to see—and will likely 
never see—a JavaScript 2.0. Noth-
ing built in 10 days is perfect, but 
once something is released into the 
wild, bugs or imperfections quickly 
become essential features and are 
nearly impossible to change. Accord-
ing to Eich,

As HTML5 emerges, 
it’s entirely possible 
that JavaScript will  
soon become a domi-
nant programming 
language for both 
mobile and desktop 
applications.


