
 6 computer Published by the IEEE Computer Society 0018-9162/12/$31.00 © 2012 IEEE

Computing Conversations

Van Jacobson: 
Getting NSFNet 
off the Ground

F or those of us closely watching 
the earliest implementation 
of  the Nat iona l  Science 
Foundation Network (NSFNet) 

in the mid to late 1980s, it felt like 
witnessing a baby sea turtle hatch far 
from the water and then sprint toward 
the safety of the ocean, all the while 
dodging hungry seagulls.

Telephone companies wanted 
to maintain their monopoly on 
long-distance data transport, using 
leased-line technology in the US 
and X.25 data networks in Europe 
and elsewhere. Well-developed 
proprietary networks were already 
available from commercial vendors, 
including IBM’s SNA and DECnet from 
Digital Equipment (DEC).

The stakes were high. Through 
patents, licenses, and usage fees, 
telephone companies could extract 
profit from every aspect of distributed 
computing, and if NSFNet succeeded, 
it would prevent those companies 
from providing a full-stack solution 
to wide area data networking. 
Companies that owned the core 
network technology also owned the 
edges of that network and could 
ultimately set the agenda for all 

control without the sluggishness of 
proprietary companies that worried 
most about reducing their market 
share. Our baby sea turtle had 
successfully dodged the seagulls and 
made it into the ocean. 

But soon af ter NSFNet f irst 
deployed, the previously solid TCP/
IP protocol started to experience 
extended outages. I ta lked to 
Van Jacobson of PARC, a Xerox 
company, about the causes of those 
early problems and what it took 
to get NSFNet running smoothly 
again (see www.computer.org/
computingconversations for our full 
discussion).

TCP/IP FAILS TO SCALE
One reason for our excitement 

about TCP/IP was that it allowed 
us to write a limitless number 
of applications for the network. 
Researchers could develop low-
latency applications such as instant 
messaging or remote log in, medium-
bandwidth applications such as 
e-mail, or latency-tolerant high-
bandwidth applications such as bulk 
file transfer and mix them all up on 
the same network infrastructure. 

Approximately 20 years ago, TCP/IP got a big boost from  
Van Jacobson and his team in the form of the slow-start  
algorithm. 

Charles Severance
University of Michigan

hardware and software connected 
to it. 

If NSFNet had selected DECnet 
as its underlying protocol instead 
of TCP/IP, in all likelihood, instead 
of carrying an Apple or Android 
phone right now, you would have a 
DEC phone in your pocket running 
the VMS operating system. If this 
seems fanciful or unlikely, look up 
the “AT&T You Will” advertisements 
from 1993 on YouTube. The future 
would have been very different if 
proprietary forces found a way to own 
the Internet’s core in the late 1980s.

The seagulls were completely 
aware of this situation, and they 
knew what was at stake. It’s why such 
a large flock gathered over this lone 
baby sea turtle sprinting for the safety 
of the ocean way back then. 

When the NSF decided that its 
first national network would adopt 
the TCP/IP protocol, we all breathed 
a sigh of relief. At least with TCP/IP, 
university computer scientists and 
other open-minded technologists 
would collectively own the network 
technology. We could make the 
network a neutral ground and move 
innovation forward under our own 



 mAY 2012 7

hills above the Berkeley campus, and 

I was also teaching on the Berkeley 

campus. Even in the mid-1980s, for 

every class, there was a message 

[netnews] group that was set up, all 

the assignments would be put online. I 

was trying to get course materials from 

my office in LBL to a machine in Evans 

Hall at Berkeley, and there was zero 

throughput in the network. It was one 

packet every 10 minutes or so.

The same problem was happening 
all across NSFNet and anywhere else 
where TCP/IP was used for wide area 
networking. It seemed that almost 
as soon as a new connection was 
added, it worked for a few days until 
more users joined, then everything 

ground to a halt as the link became 
completely clogged with traffic. And 
no one knew why.

This failure to scale rekindled the 
debate as to whether TCP/IP was a 
suitable protocol for such a complex 
and difficult task. Many suggested 
scrapping TCP/IP and switching to 
DECnet. The physics community had 
already built HEPNet, a wide area net-
work based on DECnet protocols. It 
seemed to work quite well and could 
smoothly balance low-latency access 
such as remote login with high-band-
width access file transfer activity. 
Perhaps TCP/IP just wasn’t up to the 
task. Perhaps academics couldn’t 
build robust networking protocols, 
and using networking software from 
a commercial vendor was a better 
option.

Jacobson and the teams that 
built the TCP/IP implementation in 
Berkeley Unix weren’t about to give 

up. This was simply a small flaw in 
TCP/IP that needed fixing. They knew 
that TCP/IP was well engineered and 
had performed exceedingly well in 
other networks with diverse types 
of application traffic but with fewer 
users. Their first hypothesis was that 
there must be a bug in the software:

I went down and talked to Mike Karels, 

who was heading the BSD group, 

the people that developed Berkeley 

Unix. He was getting reports of these 

problems from all over the country. 

We talked for a long time about what 

was going wrong. Is there a mistake 

in the protocol, a mistake in the 

protocol implementation? [TCP/IP] 

was working on smaller-scale tests, 

and then it suddenly fell apart. We 

struggled for three or four months, just 

going through the code, writing tools 

to capture packet traces, and looking 

at the packet traces, trying to sort out 

what was breaking.

They spent months searching 
for an elusive bug in the design or 
implementation that they would 
ultimately never find. In a moment 
of desperation, they decided that 
perhaps their initial assumption was 
simply wrong:

I remember the two of us were sitting 

in Mike’s [Karels] office after we had 

been pounding our head against the 

wall for literally months and one of 

us said, You know, the reason that I 

can’t figure out why it is breaking is 

that I don’t understand how it ever 

worked. We’re sending these bits out 

at 10 megabits—they’re zipping across 

campus—and they’re running into this 

56-kilobit wire. We expect them to go 

through that wire and pop out the 

other side. How could that function? 

That turned out to be the crucial 

starting point. At that point, we started 

saying, What is it about this protocol 

that makes it work? How does it deal 

with all those bandwidth changes? 

How does it deal with the multiple 

hops?

Proprietary networks like SNA and 
DECnet supported limited use cases 
via carefully crafted implementations 
that made sure each application got 
the network access it needed. By 
deeply understanding each particu-
lar type of traffic, these proprietary 
networks could maintain balance 
between the needs of competing 
applications. 

Although this functioned well, 
it meant that each new use case on 
these proprietary networks required 
careful engineering to fit it in with the 
rest to avoid destabilizing the overall 
network. This approach kept network 
performance consistent but at the 
cost of extremely slow innovation.

TCP/IP networks were truly 
layered in that the lower levels 
didn’t discriminate based on the 
traffic-generation application. The 
hope was to support a wide range of 
applications without requiring special 
case tuning for each new application.

As NSFNet rolled out, it proved 
to be an immediate success, with 
the growth of traffic and number 
of connected hosts increasing at 15 
percent per month—in fact, NSFNet’s 
size doubled every five months. This 
led to some problems, as described 
by Jacobson:

We were tying together 10-megabit 

campus infrastructure with 56-kilobit 

wires, and it was wildly popular 

because people who couldn’t talk 

suddenly could. They’re sending 

e-mails, moving huge files, and 

everybody is really excited. But anyone 

on any of those campuses [connected 

to NSFNet] could oversubscribe the 

[backbone] network by a factor of 

1,000, so we had a lot of packets piling 

up and getting dropped.

Jacobson confronted the failure of 
using TCP/IP over slow leased lines 
to extend campus networks nearly 
every day:

At the time, I was a researcher at 

Lawrence Berkley Lab, which is in the 

This failure to scale 
rekindled the debate 
as to whether TCP/
IP was a suitable 
protocol for such  
a complex and 
difficult task.



 8 computer

Computing Conversations

knew what the problem was, these 
kernel modifications weren’t particu-
larly well thought out or elegant:

I had this horrible driver hack that 

would let us snarf packets from the 

kernel. You set what you wanted to 

snarf was by using adb [a debugger] to 

patch the kernel [while it was running] 

with the ports you wanted to look at. 

The driver would capture those into 

a circular buffer, and you would read 

kernel memory to pull those packets 

out. Craig Leres and Chris Torek, who 

were working in my group at LBL and 

were both long-time kernel hackers, 

were embarrassed at [my kernel hacks] 

so they put together a really nice, clean 

driver called the Berkeley Packet Filter 

[BPF] that would let you pull packets 

out of the kernel via a very efficient 

ioctl() interface.

Once the first version of the slow-
start algorithm seemed to be working 
on the Berkeley computers, it was 
time to share the code with other 
schools running Berkeley Unix to 
validate the idea and determine if the 
patches actually solved the problem. 
Jacobson and Karels sent the patches 
to the TCP/IP mailing list, and an 
eager group of software developers 
and system administrators started 
furiously test ing because the 
problem on their networks was so 
acute. The initial results weren’t very 
promising—installing the patches 
crashed the system. But working with 
the other developers, Jacobson and 
his team quickly improved the code 
in several subsequent releases over 
the next 24 hours:

After about a day, we got a version that 

didn’t immediately panic [crash] and 

then started working on the actual 

algorithm with a little bit of tuning to 

make sure that it actually helped all 

the time and didn’t do any harm. It 

was completely a community effort, 

and when the community was saying 

that this mostly does good and never 

seems to do harm, that was what 

IMPLEMENTING SLOW 
START

An absolutely critical element of 
the slow-start algorithm is that every 
computer in the network needs to 
implement it in a similar manner. If 
some operating systems implemented 
slow start and others didn’t, those 
computers that sent packets more 
aggressively would get bet ter 
throughput than the “responsible,” 
slow-start-using computers. There 
was concern that if some but not all 
of the TCP/IP implementations used 
slow start and new market entrants 
didn’t, it would lead to repeated 
network collapse and endless 
arguments as to who was at fault.

Time was of the essence, as new 
TCP/IP implementations were under 
active development in many com-
panies and universities. Thankfully, 
according to Jacobson,

At that time [in 1988], there were like 

four implementations on the market. 

There was Berkeley Unix, there was the 

MIT PC/TCP [for Windows systems], 

there was a BBN [Bolt, Beranek, and 

Newman] one for Butterfly and IMP 

[Interface Message Processors; an 

early router] systems, and there was 

a Multics one.

Once the slow-start design was 
in place, the team quickly started to 
develop fixes to the Berkeley Unix 
operating system to demonstrate the 
algorithm. Up to that point, they had 
made lots of changes deep inside the 
Unix kernel to instrument the net-
work protocols and develop models 
of what was going wrong. Before they 

They switched their focus from 
searching for a bug to measuring 
TCP/IP’s behavior when it functioned 
properly across a wide area network 
with a combination of fast and slow 
network links. TCP/IP wants to pre-
send more than one packet, to fill the 
pipeline with packets and maximize 
its use of available bandwidth. The 
sending system starts by sending 
several packets (initial window size) 
and then waits to send more until it 
receives acknowledgments (ACKs) 
from the remote system. 

If the initial number of packets 
is too small, it isn’t possible to effi-
ciently use high-speed connections, 
and if the initial number of pack-
ets is too large, the packets pile up 
at the slowest connection, and the 
system drops them. At some point, 
the sending system detects a timeout 
and resends the packets, which only 
makes the problem worse. According 
to Jacobson:

If you turn them on, suddenly you get 

in this repetitive failure mode where 

you saturate the buffering that was 

available at some gateway; when you 

retransmit, you do the same thing 

again. So we were always losing 

packets. But if you turned it on more 

gradually, you wouldn’t overload the 

buffering: you would get enough of a 

clock going so that you could control 

the amount of backlog to fit the 

available buffer even as the number 

of packets in flight increases. You 

would start with a sporadic clock, but 

you would eventually fill in the detail 

and get a per-packet clock. ... The hard 

part in TCP is not in keeping it running, 

it’s in getting it started. Because once 

you have it running, a clock tells you 

exactly what to do.

Jacobson called it the “slow-start 
algorithm.” If we could get every 
TCP/IP implementation to imple-
ment the slow-start algorithm we 
could get our baby turtle back off 
the beach and back into the ocean 
for good.

An absolutely critical 
element of the slow-
start algorithm is 
that every computer 
in the network needs 
to implement it in a 
similar manner.



 mAY 2012 9

TCP (stream) level, thus it can’t take 
advantage of knowing how packets fit 
together to form continuous content.

Although it’s a gross oversimpli-
fication, content-centric networking 
uses the buffer space already pres-
ent in routers to provide the ability to 
efficiently access streams of content 
from a single source going to mul-
tiple destinations. Content-centric 
networking naturally handles widely 
varying network connection through-
puts as well as relaxes the need to 
send every single packet to all loca-
tions synchronously.

We plan to visit Jacobson again in 
a future article to explore content-
centric networking in more detail. 

Charles Severance, editor of the 
Computing Conversations article 
and Computer’s multimedia editor, 
is a clinical associate professor and 
teaches in the School of Information 
at the University of Michigan. You can 
follow him on Twitter @drchuck or 
contact him at csev@umich.edu.

leads to an unnecessary reduction 
in throughput. A router’s proper 
behavior is to discard packets that 
have been stuck in a router too long 
to properly communicate the nature 
of their network communication to 
the sending and receiving systems.

V an Jacobson continues to 
research the best way to 
use the resources in packet-

switched networks. His latest thinking 
is content-centric networking (www. 
parc.com/work/focus-area/content-
centric-networking/), which puts the 
vast amounts of memory and process-
ing power found in backbone routers 
to good use instead of causing prob-
lems like buffer bloat.

Increasingly, we’re streaming 
content from places like YouTube, 
Netflix, and live TV over the Internet. 
IP Multicast has long been a hoped-for 
solution in this space, but it has proven 
difficult to completely synchronize all 
sources and destinations connected 
to a common stream and adjust 
to varying network connection 
speeds and congestion conditions. 
In addition, Multicast operates at 
the IP (packet) level and not at the 

Mike [Karels] needed to put it into the 

[Berkley Unix] kernel.

It took about a month between the 
first release of the slow-start patches 
and when the code was of sufficient 
quality to be included in the official 
Berkley Unix release. It eventually 
debuted publicly as a core capability 
of the BSD Unix 4.3 (Tahoe) release 
in June 1988. The other major TCP/
IP implementations quickly followed 
suit, and in a remarkably short time, 
the slow-start algorithm was virtually 
universal.

ALL’S WELL
Although TCP/IP engineering and 

improvement is nearly continuous, 
the slow-start algorithm solved the 
last major engineering issue that 
caused the entire Internet “to crash.” 
With billions of computers connecting 
and millions more coming on every 
month (including several in your 
pockets or purses), it’s comforting 
to know that they all come from the 
factory with the slow-start algorithm 
built in. 

The algorithm’s very simple con-
cept allows a TCP/IP implementation 
to gauge the bandwidth for each 
connection by starting out a little ten-
tatively, and once it gets a sense of the 
available throughput for the connec-
tion, it quickly expands its window of 
in-flight packets to make best use of 
that throughput.

Interestingly, as the routers that 
make up the Internet’s fabric become 
faster and have more memory, they’re 
storing more in-flight packets longer 
and then forwarding them later, 
when the TCP/IP protocol would 
suggest that the packets be dropped. 
When this happens, the packets 
that are successfully transmitted 
after a delay have a slower apparent 
round-trip time. When your system 
sees this slower round-trip time, 
the slow-start algorithm starts 
backing off because it thinks there’s 
a bottleneck somewhere between 
the sender and receiver, which 

 Selected CS articles and columns  
 are available for free at  
http://ComputingNow.computer.org.


