
 8 computer Published by the IEEE Computer Society 0018-9162/12/$31.00 © 2012 IEEE

Computing Conversations

Inventing PHP:
Rasmus Lerdorf

O riginally conceived as an
HTML templating language,
Hypertext Preprocessor
didn’t start its life as a pure

programming language. Instead,
Rasmus Lerdorf created PHP in 1994
by collecting the code and utilities
written in C that he was using to build
websites for various clients:

I was living in Toronto and doing Web

application consulting for a number

of companies. I wrote the same code

over and over—basically, CGI [Common

Gateway Interface] scripts written in C. I

wrote code to handle forms, POST data,

filtering, and other common Web things

that you have to write in C when you’re

writing CGI programs. It was kind of

tedious and boring, so if I could reduce

the amount of time I had to spend pro-

gramming, maximize the output, and

get to the solution quicker, then that was

my goal with PHP. I put all my common

stuff into a C library, hacked it into the

NCSA [National Center for Comput-

ing Applications] webserver, and then

added a templating system on top of it

to let me easily call into it.

The first version of PHP was simply
a productivity tool that enabled Ler-
dorf to accelerate his development
across his multiple clients who needed
Web applications. PHP was quickly

interested in the Web and solving the

Web problem from all around the

world. We all faced similar issues and

collaboratively we could build a tool

that solved our problem. That was

really how PHP got off the ground.

Because PHP was initially con-
ceived as a collection of library
utilities rather than as a new pro-
gramming language, Lerdorf never
felt the need to shape its future direc-
tion. He felt PHP would thrive if he
opened the code base to other people
and approaches:

I learned a bit along the way that,

for this to grow, I had to give up con-

trol of PHP—I had to let other people

have some control. I couldn’t rewrite

patches, both because I’m lazy and it’s

a lot of work and also to give people

some ownership. Once they have full

control over their part of it, then they

become much more invested in it and

passionate. It’s not just them contrib-

uting to my project—it becomes our

project, and that really changed the

nature of PHP. This happened around

1997 or so, when I really delegated it

out and gave people full access to the

source code repository that I was using.

Once Lerdorf allowed several other
people to become involved in PHP’s

Unique among most of its peers, PHP wasn’t conceived as a pure
programming language.

Charles Severance
University of Michigan

embraced by other Web developers,
who continue to build on and improve
it. To watch the full interview with
Lerdorf, visit www.computer.org/
computingconversations.

HUMBLE BEGINNINGS
In the Web’s early days, the devel-

oper community was small, so it
didn’t take long for Lerdorf’s col-
leagues to find out about his software
and start asking for copies for their
own clients:

Other people started asking me how I

built these applications, and I said I was

using this little tool I built. They asked

if they could have it, and I said, “Sure,

why not?” My toolkit wasn’t what I was

selling—I was selling my services of

solving problems, and the tool itself is

irrelevant, really. It’s just my hammer.

After other programmers started
using it seriously, they found bugs,
fixed them, and sent him patches.
Using these patches, he modified his
utility library and templating engine
and improved the applications he was
building for his customers:

That’s when open source really hit me.

This was in 1994-1995 before the term

“open source” existed. I got together

with a group of my peers, other people

 NoVemBer 2012 9

the product. Lerdorf even leaves
architectural decisions about PHP to
the community:

It’s a meritocracy. Code speaks. If you

write a patch or a piece of code to

implement a feature, that says a lot. If

someone wants to disagree with that

way of doing things, or if they can offer

an alternative implementation, that’s

a really good argument. If all they

do is whine about it, that’s a really

bad argument, and chances are, the

implementation will win even though

it might not be the best way of doing

things. If there’s code and it sort of

works, that’s what we go with, and

that has always been the default. It

doesn’t always lead to consistency, but

it does lead to getting new features and

actually being able to do something.

Being able to connect to this type of

database even though it might not be

the best way of doing it, at least it gets

you there. That’s what PHP has always

been about—solving a problem. We

would rather have an ugly feature than

not have a feature at all.

W hen I asked Lerdorf about
PHP’s future roadmap, his
answer was that it would

match the Web’s evolution. As the
Web moves into new areas and
uses new technologies, PHP needs
to make those new technologies
and approaches available to PHP
developers. There’s no master
plan except to be useful to people
developing Web applications.

Charles Severance, Computing
Conversations column editor and
Computer’s multimedia editor, is
a clinical associate professor and
teaches in the School of Information
at the University of Michigan. You can
follow him on Twitter @drchuck or
contact him at csev@umich.edu.

evolution, he quickly built a large
following around the product:

The Web grew, and PHP was at the

right place at the right time. But also,

it was very, very easy to get in and get

started using PHP and contributing to

it. Even today, it doesn’t take much to

get a source code repository account

in the PHP project. We have close to

1,400 people with accounts, which

means those people can all commit to

some part of the repository. Slightly

more than half the people have com-

mitted something in the last year and

a half.

The only way to manage all those
volunteers is to let them manage
themselves. Within the PHP commu-
nity, many small, dedicated groups
work closely together and focus on
one aspect of PHP and collectively
own it. Lerdorf prefers to let passion-
ate volunteers move forward, even if
they make little mistakes that need to
be fixed later after their contributions
are reviewed by more experienced
members of the community.

CROWDSOURCING
Through the PHP Extensions

Community Library (PECL), interested
groups of volunteers can incubate
an idea and then build interest in
their feature. Once a feature is in
broad use, it can become part of the
core distribution, such as the JSON
extension in PHP 5.1:

That’s how new features eventually

creep in—they live outside of the

core tree, get enough penetration

and enough people to install them,

and then we see Linux distributions

pulling them into their core version of

PHP. We look at what’s happening out

there, but there’s no real management

of that either.

In many open source projects, an
individual or small group controls
the project’s architectural direction
to ensure consistency across

 Selected CS articles and columns
 are available for free at
http://ComputingNow.computer.org.

