
 6 computer Published by the IEEE Computer Society 0018-9162/13/$31.00 © 2013 IEEE

Column SeCtion titleComputing ConverSationS

Bob Metcalfe:
Ethernet at Forty
Charles Severance

Bob Metcalfe describes how the Ethernet local area network was created
40 years ago at Xerox Palo Alto Research Park.

I t’s pretty much impossible
today to find computing
technology that doesn’t
support Ethernet or that didn’t

evolve from it, such as Wi-Fi. We
simply assume that everything from
our phones to our laptops to our
printers and backup systems come
ready to plug into a high-speed
wired or wireless network. In fact,
many homes now have both a wired
and wireless local area network.

But 40 years ago, LANs didn’t
exist. The typical approach to
distributed computing was to
connect terminals in offices
throughout a building with serial
cables that ran from the back of
the terminal to the mainframe.
Sometimes, this connection was
done through phone lines and a
dial-up modem.

I recently spoke with Bob
Metcalfe, who described how the
Ethernet local area network was

“invented” 40 years ago at Xerox
Palo Alto Research Center (PARC)
on 22 May 1973. Visit computer.
org/computingconversations to
watch the full interview. Metcalfe
is quick to point out that many
brilliant engineers contributed to
Ethernet and other popular forms
of high-speed local area networking
over the years. Although it’s an
oversimplification to give him sole
credit for inventing it, Metcalfe was
definitely on the front lines all those
years ago.

PERSONAL COMPUTERS
In the quest to build the “office of

the future” during the early 1970s,
the creative people at PARC decided
that instead of having terminals
connected to a single central
computer, they would give every
person a “personal” computer and
connect those computers together.
According to Metcalfe,

I happened to be at the Xerox Palo

Alto Research Center when a prob-

lem evolved that had never before

occurred—the problem of having a

building full of personal computers.

I was the networking guy, so they

turned to me and said, “Network these

puppies.” We had just finished start-

ing the ARPANET, which was packet

switching, and it was pretty clear that

we wanted this [personal computer]

network to connect to the [not yet

called the Internet] thing.

There was also a desire to
connect the personal computers of
the future with the printers of the
future:

Our first printer—whose name

was EARS, and that is a whole

other story—could do a page per

second at 500 dots per inch. If you

do the math, that’s about 20 Mbits

per second. Existing methods

 mAY 2013 7

Once Metcalfe was convinced
that he could reliably send high-
speed data over long distances using
coax cable, it was time to define
the details and build the hardware.
He was joined by David Boggs, who
had some experience working in a
television studio. Boggs helped with
both the hardware and software
design.

The team decided to use
Manchester encoding to send the
bits over the cable. In Manchester
encoding, the first half of the bit
time is the opposite of the bit’s value,
and the second half of the bit time is
the bit’s actual value, guaranteeing
a voltage transition in the middle of
every bit:

The beauty of Manchester encoding is

that while you were sending a packet,

you could tell whether it was going by

so you didn’t have to listen for it for

long—usually, 340 nanoseconds.

One of the first differences

between the Ethernet and AlohaNet

was this carrier sense. In AlohaNet,

you couldn’t tell if someone else was

transmitting at the same time as you,

but on the Ethernet, you could. By

waiting, you avoided destroying each

other’s packets.

The Ethernet rule was that before

sending, a station would listen

first to avoid stepping on ongoing

packet transmissions. This meant

that once you had been sending a

packet for a short while, you would

have “acquired” the Ether and could

continue without interference. The

maximum packet length was limited

to ensure shared access to the Ether.

Another advantage of Manchester
encoding was detecting collisions
after you had started transmitting a
packet:

PARC’s Ethernet could pull the cable

up to a voltage or leave it open with

no voltage. If you are leaving the

cable open (half the time under

Manchester encoding) and if you

If the stations detected that the
data wasn’t successfully sent, they
would calculate a random time to
wait before retransmitting in the
hope that they wouldn’t overlap
when they retransmitted the data.
This allowed multiple computers
to share the same media—a radio
frequency—by using randomized
retransmission. This approach
appealed to Metcalfe because he
wanted to have multiple personal
computers share a single Ethernet
cable:

I was trying to avoid this big rat’s nest

of wires—I only wanted one wire, not

16 or 32, and I wanted a distributed

solution for how to share this single

cable.

SHARED CABLE
If Ethernet was going to be a

single, long, shared cable, it was
important to see how data could be
transmitted at high speeds over long
distances:

One of the first things I did was to

buy a mile of cable. Then I hooked up

a pulse generator to one end, hooked

an oscilloscope to the other end,

and started launching square waves

down the cable to see what came out

the other end. I figured this would

be good preparation for building a

network. But what came out the other

side wasn’t a square wave: it had a

lazy rise time and lazy fall time. If

you put a digital gate on the receiving

end, you could recover the square

wave. I had some confidence that if

we could get the stations connected

to the cable, they could inject their

square waves, and the other stations

could recover them.

of interconnection had a lot of

problems. First, they were all “home

run,” so all these wires, one from

every desk, would come to this one

place in the building. Second, the

existing interconnects ran at 300

bits per second, 14,400 bits per

second if you really revved them up,

which wasn’t even close to 20 Mbits

per second. We wanted to keep the

printer busy by sending documents

to it from all these PCs that hadn’t

been built yet. We were literally

building the printer and the PCs at

the same time.

Charles Simonyi designed an
earlier effort to network personal
computers, called SIGNET (Simonyi’s
Infinitely Glorious Network), but
Metcalfe felt it was too complex and
wanted something simpler. He came
across a wireless network in use at
the University of Hawaii:

In the course of investigating how to

organize Ethernet, I ran into a packet

radio network at the University of

Hawaii called AlohaNet. What was

beautiful about AlohaNet is that it

solved a distributed problem. How

could we share a radio channel back

to the mainframe at the University

of Hawaii if we’re just a bunch of

terminals scattered around the

Hawaiian islands and can’t easily talk

to each other and get coordinated

around the sharing of an inbound

radio channel?

Norm Abramson at the University

of Hawaii devised a randomized

retransmission procedure in which

a person would type a card image

80 columns wide. After typing in

your card image, you would hit

“Send,” and then your terminal

would send it to the mainframe

and wait a short time to see if it

returned an acknowledgement

on the outbound channel. If so,

everything was fine, but if there was

no acknowledgement, it probably

meant that two terminals had sent at

the same time.

Metcalfe wanted
to have multiple
personal computers
share a single
Ethernet cable.

Computing ConverSationS

 8 computer

detect the cable pulled up anyway,

then you have detected a collision.

In addition to carrier sense and
collision detection, each packet had
a source and destination address
so that each workstation or printer
could identify the traffic being sent
to it:

The addresses were 8 bits, so on the

backplane of these little personal

computers, we would wire wrap in

a code between zero and 255, and

that would be the machine’s serial

number. You would read the address

off the backplane and put it in the

packet. Having two addresses was

different from AlohaNet, which had

one address because it had two one-

way channels.

We also added cyclic redundancy

checksum (CRC) on the end of the

packet, which we implemented in

hardware so that you could tell if a

packet had been damaged. If there

was a collision, and the contending

stations backed off, there would be a

hunk of garbage on the cable. When it

was received, the checksum wouldn’t

match, so you would throw the packet

away.

In addition to designing the
protocol to put the bits onto the wire,
the team also looked for a device
to allow adding new workstations
to the network without taking the
network down:

We didn’t have to run a cable through

the building and back to the rat’s nest

every time we installed a new PC.

We wanted to put one cable down

the middle of the corridor, and every

time you wanted to add a PC, you

just ran the cable and tapped into the

coax. We didn’t want the network

to go down while tapping into it

because we wanted 24/7 access to the

network.

This requirement led to a device

we found in the cable television

industry called the Gerald tap.

David Liddle did cable television

installations when he was in grad

school in Toledo, and he suggested

that we use the Gerald tap because

it was already being made in volume

and worked just fine. You would drill

a little hole in the outer casing of the

coax, screw in this tap, and it would

puncture the insulation and go right

to the copper and tap in.

LAN WARS
Other computing companies

became interested in using Ethernet-
like approaches and started working
with Metcalfe, who decided that the
best way to ensure interoperability
among the various implementations

was to develop a standard, which
led to the formation of the IEEE 802
working group. Digital Equipment
Corporation, Xerox, and Intel
submitted the “Blue Book” Ethernet
specification in 1980.

But once word got out that the
IEEE 802 working group would
be developing a LAN standard,
several Ethernet alternatives
were quickly put forward. IBM
claimed its token ring approach
was superior, and General Motors
championed a token bus as the
best approach. The early efforts
of the IEEE 802 working group
were fraught with politics as
the three solutions fought for
supremacy. Ultimately, after
a long battle, the working
group standardized all three

approaches as IEEE 802.3
(Ethernet), IEEE 802.4 (token bus),
and IEEE 802.5 (token ring) and
let the market work out which
technology it would adopt.

Given the slow process, DEC,
Intel, Xerox, and 3Com (Metcalfe’s
newly formed company) decided not
to wait and simply started building
and shipping interoperable Ethernet
hardware to an eager marketplace.
One of the keys to 3Com’s rapid
success was that personal computer
vendors didn’t want to build network
hardware onto the motherboards
until the IEEE process had reached a
conclusion. This meant that for many
years, the only way to get Ethernet
support for a personal computer was
to purchase and install an expansion
card. For a while, 3Com was
selling well over a million Ethernet
expansion cards per month.

While 10 Mbits seemed fast
enough for personal computers in
the mid to late 1980s, the Ethernet
community always felt the need to
go faster. According to Metcalfe:

In 1992, I was involved in Grand

Junction Networks, a company

that would introduce the 100-Mbit

Ethernet. I remember a group of us

at my home trying to think of how

we would make a faster Ethernet.

Efficiency depends on the diameter

of the network in bit times, and as

you go faster and faster, the efficiency

goes down. We realized that since the

market had switched to using hubs,

we could assume a maximum cable

length of 100 meters instead of 1,000.

And that was the factor of 10 that we

needed! By changing the collision

interval, you can maintain the same

theoretical efficiencies by assuming

that you’re going 100 meters instead

of a kilometer. That got us to 100

Mbits per second.

Later, the IEEE 802.11 (Wi-Fi)
standard implemented an Ethernet-
like protocol using wireless
transmission. Over the years, there

After a long battle,
the IEEE 802 working
group standardized
all three approaches
as IEEE 802.3 (Ether-
net), IEEE 802.4 (token
bus), and IEEE 802.5
(token ring) and let
the market work out
which technology it
would adopt.

 mAY 2013 9

have been improved versions of IEEE
802.11 with increased speeds. But
even 100 Mbits wasn’t fast enough
for the Ethernet community:

Then we went to gigabits, followed

by 10 Gbit, which is the mainstream

now. You can’t be a computer scientist

and build that kind of hardware

now—you need to be a real hardware

engineer. But after 100 Gbits, we’ll

want terabits, and I’ve already begun

giving talks about terabit Ethernet.

E thernet used AlohaNet
as a starting point and
built on the concept of a

shared transmission medium and
randomized retransmission when

data was lost. But a few design
innovations from Bob Metcalfe,
David Boggs, and others who
built that first Ethernet at PARC
form the foundation of nearly all
modern LAN technologies: adding
source and destination addresses
to every packet, carrier sense,
collision detection, and CRCs.
These patterns led to relatively
simple LAN hardware solutions
that are inexpensive to make
and scale to very high levels
of performance, while making
efficient use of the medium’s
available bandwidth. These
patterns have served us well over
the past 40 years.

Ethernet’s 40th birthday will
be celebrated in style on 22-23

May 2013 at the Computer History
Museum in Mountain View,
California. It will be a gala event with
industry briefings and all the many
Ethernet inventors invited to come
and share in the festivities and tell
their stories.

Charles Severance, Computing
Conversations column editor and
Computer’s multimedia editor, is
a clinical associate professor and
teaches in the School of Information
at the University of Michigan. Follow
him on Twitter @drchuck or contact
him at csev@umich.edu.

 Selected CS articles and
 columns are available for free at
http://ComputingNow.computer.org.

