
40 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

COMPUTING CONVERSATIONS

Since the 1930s at Bletchley Park, there has been a
continuous arms race to both improve and break
cryptography. The files leaked by National Secu-
rity Agency (NSA) contractor Edward Snowden

made it clear that governments regularly gather data on
average citizens, which makes us wonder if privacy is even
possible. Do our carefully designed cryptographic sys-
tems protect our information as we expect them to, or are

they just thin veils that can easily be
pierced by the government? I posed
these questions to leading security
expert Bruce Schneier. Watch the
entire interview at www.computer.
org/computingconversations.

CRYPTOGRAPHY AND
THE NSA
When asked whether a cryp-
tographic standard like the Ad-
vanced Encryption Standard (AES)
offers protection against well-
funded and highly skilled prying
eyes, Schneier replied:

One of the things we’ve learned from the Snowden
documents is that broadly applied cryptogra-
phy gives the NSA trouble, at least at scale. The
NSA does a lot of cryptanalysis and breaks a lot
of systems. But well-designed and well-imple-
mented cryptography does stymie [the NSA].

All cryptography can eventually be broken—the only
question is how much effort is required:

Cryptography forces attackers to have a priorities list.
Depending on their time and budget, they’ll work their

Bruce Schneier:
Building
Cryptographic
Systems
Charles Severance, University of Michigan

Security expert Bruce Schneier discusses

security from the perspectives of both the

National Security Agency and the National

Institution of Standards and Technology.

See www.computer.org/computer-multimedia
for multimedia content related to this article.

 A P R I L 2 0 1 6 41

EDITOR CHARLES SEVERANCE
University of Michigan; csev@umich.edu

way down the priorities list. Your
hope is that you’re below their
budget line. Without cryptog-
raphy, an organization like the
NSA can bulk-collect data on
everybody. With cryptography, or-
ganizations are forced to be more
targeted. That’s extraordinarily
valuable because it means the FBI
will go after criminals, the NSA
will go after agents of a foreign
power, and the Chinese govern-
ment will go after US government
officials that rise to whatever level
it wants to spy on. The cybercrim-
inals will just go after a few of us,
and the rest of us are protected.

In truth, having good cryptography
algorithms doesn’t automatically
ensure security because the algo-
rithms must be realized in real-world
systems:

When we say we trust the
cryptography, all we’re saying
is that we trust the mathemat-
ics. Everything I know about
cryptography tells me the math
is good. Certainly there will be
cryptographic advances, and
some things will be broken in the
future, but by and large the math
works. But math has no agency.
Math can’t do anything—it’s
equations on a piece of paper. In
order for math to do something,
some of us need to take that math
to write code, embed that code in a
program, and embed that program
on a computer with an operating
system on a network with a user.
All those things add insecurity.

Those who would defeat cryptography
rarely attack the mathematics directly;
instead, they attack the systems, net-
works, and humans that implement
and use the security:

There’s an important corollary
here: complexity is the worst
enemy of security. The more
complex you make your system,
the less secure it’s going to be,
because you’ll have more vulner-
abilities and make more mistakes
somewhere in the system. We
learn again and again when we
see analyses of voting systems,
embedded systems, cell phones,
messaging systems, or email
systems that the vulnerability is
always outside the cryptography.
It’s almost always something that
the designer, implementers, coders,
or users got wrong. The simpler we
can make systems, the more secure
they are. We recently learned
about vulnerabilities in the key
agreement protocols that are used
to secure a lot of VPNs [virtual
private networks] and Internet
connections. If you look at where
that vulnerability occurred, it was
due to a shortcut that allowed for
massive pre-computation. The
math works great, but the imple-
mentation of the math was flawed.

One way to weaken a security standard
is to introduce complexity:

The Internet Engineering Task
Force [IETF] process for Internet
standards doesn’t really work for
security because those standards
are compromises made by a com-
mittee. They put in all the options
to make everyone happy. They put
in as much flexibility as necessary
to make the system as comprehen-
sive as possible. That approach
is anathema to security. Security
needs as few options and to be
as simple as possible. You don’t
want to compromise. You want one
group to win because that group
has a self-contained vision. If you
have a piece of this and a piece

of that, there’s going to be some
interaction you didn’t notice. And
that interaction will be the vulner-
ability that breaks your system.

CRYPTOGRAPHY AND NIST
To make sure the underlying mathe-
matics of cryptography are solid, the
National Institute for Standards and
Technology (NIST) runs a public mul-
tiyear evaluation process where peo-
ple are invited to submit an algorithm
for consideration as the standard. The
most recent encryption standard se-
lected was AES in 2001:

NIST is trying to build standards,
and it has a standard for the crypto
algorithm, which is currently AES.
It was selected using a public
process where multiple groups
submitted algorithms and NIST,
representing the consensus of the
community, picked a winner. It
wasn’t dictated from on high and
there were no secret criteria. The
AES algorithm was the one that
most of us thought was the best.
Actually, there were several we
thought were good candidates, and
NIST picked one. But there is a lot
of trust in the process because it
is public, open, and international.
SHA-3, the new secure hash stan-
dard, used the same sort of process.

Schneier designed and submitted an
algorithm called Twofish as one of
the entries in the AES competition.
Twofish was one of the finalists, but
NIST selected an algorithm called Ri-
jndael as the AES standard:

AES was an interesting process.
It started with 64 algorithms,
of which 56 met the submission
criteria. Then NIST whittled it
down to 15 or 16, and then in the
next round whittled it down to five,

42 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

COMPUTING CONVERSATIONS

and then eventually to one. So it
was a constant winnowing process.
My Twofish algorithm made it into
the top five. There were no bad al-
gorithms among the finalists. The
differences were more about secu-
rity margin and implementability
in the hardware versus embedded
systems or otherwise constrained
systems. To me, it came down to
three algorithms. I thought they
were all good choices. Twofish was
one of the three and Rijndael (the
eventual winner) was another.

For Bruce, winning the competition
was less important than making sure
the selected algorithm was something
we all could trust:

While it would have been great to
be the winner, I think there was
a lot of value in NIST picking a
non-US algorithm. By choosing
an algorithm created by cryp-
tographers from Belgium, NIST
said to the world that it picked
what it thought was the best
algorithm, not just an Ameri-
can one. That was an important
consideration I hadn’t thought
of at the time. So I can’t fault
this process at all. It was really
fun to participate and I would
do it again. I also participated in
the SHA-3 competition with an
algorithm called Skein. Someone
else won, which was fine with me.

Given that these competitions take
several years and it could be more
than a decade between competitions,
they make a big impact in the security
research community:

These competitions are lots of fun
for cryptographers and students.
They give students lots of targets.
One of the hard things as a crypto
student is that you have to learn
to break stuff. The only way to
learn how to make things is by
breaking them. These competitions
allow students to start breaking

things that have not been broken
before. They can publish papers
and gain credibility in the field.

It’s a unique aspect of security re-
search that the “coin of the realm” is
poking holes in results produced by
your colleagues in the field:

You go to a security or crypto
conference and there are going to
be papers from people who break
each other’s stuff, so you need a
thick skin. You have to understand
that we are all learning. I produce
a protocol and you break it. Sure,
I’m unhappy, but I’ve learned
something—and so have you
and so has everyone else. That
knowledge is more important than
my particular creation surviving.
Anyone can invent a cryptosystem
that he or she can’t break. The
only way to get better at design
is by breaking others’ designs.

Once we accept the fact that
there is no unbreakable cryp-
tography and certainly no

unbreakable computing system, the
goal is to get to the point where we
have the best possible algorithms and
a high level of trust in them. The secu-
rity field has been well served by the
cryptographic algorithms produced
through the NIST standardization
process. By using an open process and
encouraging competition and critique
from all participants, we have the best
chance of developing solid and trusted
cryptographic algorithms.

CHARLES SEVERANCE is a clinical

associate professor and teaches

in the School of Information at

the University of Michigan, and

is Computer’s multimedia editor.

Follow him on Twitter @drchuck or

contact him at csev@umich.edu.

